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Equilibrium densities of stellar masses possessing a density of the same order as the density of
the atomic nucleus, and consisting of a highly degenerate baryon gas, are discussed, This treat-
ment differs from that of Oppenheimer and Volkoff [4] in that the presence of hyperons at high
densities is considered. The treatment is based on the Einstein gravitational equations, The
possible existence of some equilibrium configurations containing a large number of hyperons is
pointed out, The equilibrium models are computed for both and "ideal” Fermi gas and a real
gas in which interaction between particles is taken into account.

I, Introduction

It is now generally known[1,2] that complex atomic
nuclei are incapableof existence at densities of p > 10°
g/ cm®, When the density of matter rises to this value,
the totality of nuclei present transforms to an assemblage
of simple nucleons, If the temperature is so low that
electrons and nucleons are degenerate, then further in-
crease in density to p ~ 3 - 10! g/cm?® will initiate a
numerical preponderance of neutrons over protons and
electrons, and at p ~ 102 g/cm? the neutrons will be-
gin to predominate with respect to the pressure they exert
[3]. Thus, the superdense stellar masses at p 5 102 g/ cm?®
must be composed predominantly of neutrons,

The equilibrium configurations of neutronic stars
have been studied by Oppenheimer and Volkoff [4]. They
showed that the masses of neutronic stars must have val-
ues falling in the range 0.30 < Mg % 0,70 while the
radius values must lie within the range 6 € R ¥ 20 km,
This is the fundamental finding of their work, It is as-
sumed, in their calculations, that the neutrons form an
ideal gas (naturally, a degenerate gas) all the way to as
high densities as we please,

Some further development of the question was a-
chieved in a recent contribution by Cameron [5]. He
took account of the forces of mutual repulsion between
neutrons acting at close range. As a result, it was found
that the masses of some configurations of neutronic stars
may reach 20 . Cameron, independently of the authors
of the present article, noted that hyperons must neces-
sarily appear in degenerate stars at fairly high densities.
However, he did not publish any further probings into
this matter, )

The present article is a continuation of our previous
contribution [6] in which the question of the appearance

of hyperons at high densities in a degenerate gas was in-
vestigated, and the effect of hyperons on the equation of
state of the latter was discussed.

Let us recall some of the fundamental findings re-
ported in that paper,

At a baryon density N = 6,4 + 10*® cm™3 (i.e., at
p=11-10% g/cm?), highly degenerate matter must
inevitably contain hyperons and 4-mesons in addition to
nucleons. At still higher densities, 7—mesons must also
make their appearance. Therefore, at densities of mat-
ter falling within the range 10% 2 p 2 10% g/cm?®, we
are dealing with a neutron gas, and in the range p > 10%
g/ cm®, with a gas constituting a mixture of hyperons and
nucleons, the percentage of hyperons increases rapidly
with the density,

The concentrations of various particles in an equili-
brium degenerate gas are determined from the following
equations which contain the critical Fermi energies E
and, accordingly, the concentrations of different species
of particles:

Eyo == En; Ey+ = En—Ee; ‘
Ey-=E,+ E,;; E,=E,=m? (11)
2ZNy+ ZNy~—lVe—-Np—N,,=0, (

where the symbols Y°, Y, Y7, n, e, g, and T signify,
respectively, neutral, positive, and negative baryons(gen-
eral terms covering nucleons and hyperons), neutrons,
electrons,and u-mesons and T -mesons,

To each particle corresponds some threshold density
value starting from which the particle is capable of ex-
istence in a medium as a stable component of matter,
The equations cited fully determine the concentrations
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of all the particles, given the total number of baryons
per unit volume, However, a system consisting of only
those equations which are compatible with a given con-
centration must be taken for each value of the concen-
tration of all baryons, while the concentrations of those
baryons which do not become included in the system of
equations in this case must then be set equal to zero.

Solving Egs, (1.1), we find the concentrations of the
particles, These concentrations may be expressed in
terms of the parameters:

tx = 4 arsh (pr/myc), (1.2)

where my, is the mass of the k-th particle, Py is the cri-
tical Fermi momentum,

Pr = (67%/ay) shN )} (1.3)

for the k-th particle, ay = 2S¢ + 1 is the number of par-
ticle spin states.

The parameters ty, in the case of a spherical star,
must be functions of the distance r from the center of
the star, Various ty values are then expressed in terms
of t, by the following relations.

In the case of neutral particles, i.e,, atk = n*, A,
X°and =©

t
lk = 4 arch (:’i—:Ch ‘Z:L) y (1.4)

and in the case of positive baryons, i.e., atk = p, p*, =7,

”ln tn Ee
ty = 4 arch (W ch b Ty ) » (L.9)

and, finally, in the case of negative baryons, i.e., at
k=2 and Z:

m ¢ r
ty = 4 arch Km—: ch -2:1 -+ —,;:7) , (1.6)
T-mesons exist in a star only at a baryon concentra-
tion N > 5,9 - 100 em™3, i.e., p > 1.4+ 107 g/cm?, At
fairly high densities, there exists no essential difference
between the right-hand members of Eds, (1.4), (1.5), and
(1.6). Since E, = m.n.cz, this always occurs when

t. m_
LS LA
ch >mn

II, Fundamental Equations of Equilibrium
Configurations

In the case of stellar configurations of the conven-
tional type (for example, for our sun), the actual radius
of the star is very large compared to its gravitational ra-
dius, In the case of superdense configuration states, these
two quantities become comparable. This means that it
is not permissible to neglect the effects of the general
theory of relativity. In other words, these calculations

and G. S. SAAKYAN

must be carried out with Einstein’s gravitational equa-
tions as the basis,

We shall seek to find the solution to Einstein's equa-
tions for the case of a spherically symmetric distribution of
matter, It is known that an arbitrary selection of coor-
dinate systemsmay be employed within the framework of
the general theory of relativity such that the four-dimen-
sional space will be of the form [7]:

ds* = c%e dt* — r? (d6? -+ sin? 0 d@?) — e* dr?,(2.1)

where v and A are functions of r. In each concrete prob-
lem, these quantities are subject to redefinition, Formu-
1a (2.1) is valid not only for a steady-state distribution

of matter in the star, but also in the case where radial
motions occur in the star, velocity being a function of r
and t alone, so that the spherical symmetry of the distri-
bution of matter is unaffected. Of course, the functions
v and X are dependent not only on I _in this case, but
also on t, Oppenheimer and Volkoff [4] have shown that
the solution of Einstein's equations in the static case boils
down to thesolution of the following comparatively simple
differential equations:

% =45tci2 r2p; (2.2)
dP P 1
ar = —%—(43'[?7'3}) + u),(2.3)
r(T r—2u)

where P (1) is the pressure, k is the gravitational constant,
and u (1) is defined by the formula

u (7‘) = 322—; (1 —_ e*’*). (2.4)

At the boundary of the star, where r = R, the value
of u(R) is equal to the mass of the star as perceived by
an outside observer. As regards the significance of u (r)
for small values of r, it is clear from Eq, (2.2) that this
value in a certain sense characterizes the quantity of mat-
ter enclosed within a sphere of radius r, However, under
the conditions considered, when the gravitational field is
highly intense and the gravitational mass defect may be
large, the concept "mass enclosed within a sphere of ra-
diusr*® is required in the strict sense, We shall not dwell
on that matter at this point, For our purposes, the defini-
tion (2.4) will suffice,

Later on, we shall use the system of units for which [4].

4,5
mnc 1

s = En =

; c=k=1. (25)
Masses and distances have the same dimensionality
in these units.
The unit of distance in this system is

- 5= h e c o - 6 -
o= -V2n(—mnn) e 14 10 em e
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EQUILIBRIUM CONFIGURATIONS OF GAS MASSES 603

The unit of mass is

b=al =18510% =9.290. (27
Finally, the unit of time is
8 = a/c = 4.57-1075 sec, (2.8)

In this system of units, Eds, (2.2) and (2,3) transform
to:

% — barp (r);

ar (2.2)

4
a__ _Pte (4nr3P 4 u).

dr r(r—2u) (2.3

Equations ( 2,2) and (2.3) contain three unknown func-
tions P, P,and u, The equation of state, about which more
will be said in the following section, should be included
with the above as a third equation,

Solving this system of three equations, we find a fam-
ily of solutions each of which corresponds to a certainmass,
radius, internal distribution of matter, and space metric,

Integration was carried out by the Runge-Kutta meth-
od for several variants of the equation of state,

I, Configuration Consisting of an Ideal Gas

For an ideal degenerate gas, the equation of state appears in parametric form as follows [6]:

1 (my )\ 2
p= Kn 2_2. O (m—k) (Sh ty — tk) —+ z’Vﬂmr,C";
k n

1 1 ymy 4
1 = Kn §?Gk ('-;k—)

3

n/

7

ksh tx — 8sh :i 3tk) )

(3.1)

(3.2

N, is the density of 7~ -mesons. The definition of Ky is found in Eq. (2.5). Summation is carried out over all spe-
cies of particles present at the given point in the star, A1l parameters ty (i.e., also concentrations Ny), as well as
N, , are functions of the density of matter, It is convenient to choose a parameter ty, i.e., a concentration Np, as
the independent variable in the calculations, Equations (3,1) and (3.2) are expressed in CGS units, In the system of

units used in Eq. (2.5), K;, is to be replaced by 1/4m,

Substitution of Eqgs. (3.1) and (3.2) into (2.2') and (2.3') yields

d 1 my N4 o |
% — 72 [Z-z—ak (m—:> (sh & — ) + N,,mnchnJ ; (8.9)
K
m, \4 t
o . Z%ah(;n—k) (sh t, — 2 sh Tk)“L 3N m e 4K,
n n /
dr —  r(r—2u) 1 my \4 L,y 0f,
T e T
m, \4 t,
x{u SR A (n_") (sh te — 8sh -~ - 3tk>}. (3.4)
k n

In sum, we have to integrate Eqs. (3.3) and ( 3.4) in order to ascertain the internal structure of a star, We might
also proceed directly from Egs, (2.2') and (2.3"). In the latter case, it would be feasible to first plot a graph of
P = p (P), i.e., a curve of state, on the basis of Eqs. (3.1) and (3.2).

We must start the integration of Egs. (3.3) and ( 3.4)
from the center of the star, where

u(0) = 0; t, = 1, (0). (3.5)

tp (0) here defines the density of matter at the center of
the star, The various values t, (0) then corresponds to
the various configurations. In practice, we obtain a num-
ber of solutions specified by several arbitrary assignments
of t (0). Once we find these solutions,by the approach
to be described below, we will be able to determine, for
each of them, the values of the observed parameters,
e.g., radius or mass of the particular configuration. The
observed parameters are arrived at in this way as func-

tions of tp (0). After eliminating ty (0), we are in a posi-
tion to determine each of the others, In particular, this
approach leads us to the relationship between mass and
radius for our family of configurations, With reference
to the first of the initial conditions (8,5), this means that
there is no point mass at the center of the star,

In the case where we employ Egs, (2.2") and (2.3")
directly, the initial conditions will have the form:

2 (0) =0;p =p(0); P =P (p(0).

where P (0) is the density at the center of the particular
configuration,

(3.6)
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TABLE 1, Several of the Most Important Parameters of Hyperonic Stars Consisting of an

Ideal Gas of Baryons

Star Hyperonic core of star
di lcoordinat
central density mass °°°r’; d‘;'.rlllaste mass co?; d;ﬂ: o
_ | Baryons Matter “52. g “Sg Hag- g %g
S | N(O,em™ - 4mp(0), | 2 e 2 o | B |8 E18% o
+ g/em® |E8|gE| 88| £ | S8 |%EI5&| &
0.566 | 1.00.10%7 | 1.62-10% ]0.0147|0.136|2.090|28.7 — — — —
1.0 6.50-10%7 1.00-10* 10.0329|0.306 | 1.537 | 21 .1 — — — —
1.3 1.36-1038 2.24-101 10.0443|0.4111.345]18.4 — — — —
1.5 2.20-10% 3.62.10 10.0495/0.4601.170116.0 — — — —
1.8 3.85-10% 6.60-10'* 10.0600|0.557 {1.065 | 14.6 — — — —
2.4 1.25.10% | 2.34.10% 10.0683|0.634{0.805(11.0 {0.0132]0.123]0.245| 3.36
2.75 3.1 .10%® 5.92.10% 10.0622|0,5780.753 {10.3 10.023410.2470.270| 3.20
3.0 5.45-10% | 1.09.10% 10,0559|0.519]0.703| 9.63]0.0255|0.237 |0.254] 3.48
3.3 1.08.10% 3.62.10% ]0.0484|0.4500.670 | 9.1810.02580.240(0.232| 3.48
4.0 3.50-10% 8.29.106 0.0354|0.329]0:594| 8.14{0.0225]|0.209|0.4851 2.54
5.0 1.26.1040 3.45-10'7 10.0245(/0.22810.506 | 6.93{0.0173{0.161{0.137) 1.88
6.0 3.53-104 1.45-10'8 10.0191/0.177 |{0.557| 7.63|0.0135(0.125{0.145] 1.57
7.0 9.36-104 3.39-108 10.0237|0.2200.767 {10.5 |0.0415{0.107|0.112} 1.53
00 oo oo 0.0349{0.324[0.808 [11.1 |0.01301.121 |0.145| 1.99
Proceeding from the initial conditions, integration ”/
is carried out step by step all the way to r = R, where 1220
R is defined from the condition P (R) = P (R) = t, (R) { )
19

= 0, Then R will signify the coordinate radius of the
configuration, and u (R) = M will be its mass,

The mass of the region containing hyperons, i.e.,
the mass of the hyperon core, will be of interest as a
characteristic property of the stellar configuration. Hy-
perons are capable of existing in an equilibrium state
beginning with ty = 2,1, The value of Ry at which ty(Ry)

= 2.1 will consequently be the coordinate radius of the
hyperon sphere, As regards the mass concentrated in this
sphere, the value of u (Rp), which we here denote as My,,
will be a measure of this quantity. Results of pertinent
computations appear in Table 1, Values of coordinate
radius and mass both for the star in its entirety and for
the hyperon core, with the mass of the hyperon core ar-
bitrarily understood in the sense alluded to above, are
tabulated there alongside entries giving data on the con-
centrations of baryons and density values at the center
of the star, The first five models (first five rows of the
table) do not contain hyperon cores. They are purely
neutron stars, The data on these five lines agree well
with the findings reported by Oppenheimer and Volkoff,
Starting with the value of central density corresponding
to tp (0) == 2.1, the characteristics of our configurations
diverge from the characteristics for purely neutron con-
figurations,

In Fig. 1, curve la, depicts the dependence of the
mass of the configuration on t; (0). For purposes of com-
parison, hollow dots are added to indicate the results of
Oppenheimer and Volkoff, where the existence of hy-
perons was left out of account, As is clear from the

6] /,/ - 72
a6 T T — 26
_ N

o | DY

a4 / 7z

\ L

al zV 3 |6 57 3
1 B8 L 1

4 0 5 60 65

n 7 & 85 P
arctg £,(0)

Fig. 1, Plot of mass of star as a function of
ty (0) defining the density of matter at the -
center of the star. The definition of ty is
given in Eq, (1.2). Curves la and 1b depict
the mass of the star and its hyperon core in
the case where elementary particles form
an ideal gas at any densities, Curves 2a and
2b present the same picture forthe case where
repulsive forces acting between baryons at
high densities (real gas) are taken into ac-
count. Black dots indicate the mass of con-
figurations consisting of neutrons, with re-
pulsive forces taken into account. Hollow
dots indicate the mass of those configura-
tions consisting of an ideal neutron gas
(calculations by Oppenheimer and Volkoff).
The mass is expressed in units of solar mass,

graph, a decrease in the mass of a configuration is ar-
rived at in calculations taking hyperons into account,
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Curve 1b, also in Fig, 1, represents the mass of the
hyperon core in the sense alluded to above. As is readily
seen from the graph, a significant portion of the config-
uration mass is contained within the hyperon core when
at 3 < tp (0) < 7. The value of a star’s mass hits a min-
imum at t; (0) S 6, comresponding to a baryon concen-
tration of the order of 3.5 - 10*' cm™3, At those density
levels, a degenerate gas of baryons would become rela-
tivistic,

In Fig. 2, curve la, shows the relationship of coor-
dinate radius and t, (0), while curve 1b shows the rela-
tionship between the coordinate radius of a hyperonic core
and the same quantity,

Figure 3 shows curve 1 as the relation between co-
ordinate radius and mass for the configurations calcula-
ted in the present paper.

RiM
20 A¥ 1

18 \ !

N

a1\

1 |
12t N

7] a— \
s

4
(]
—]

~

<
]
// /r

2a
A s s ——tf 26
2 ! NG 18
o ol 12 e o7 [
5 s 55 60 65 T 75 a0 & v
arcty 4,(0)

Fig. 2, Dependence of coordinate radius of star
and coordinate radius of its hyperonic core on
the parameter ty (0). The legend is same asin
Fig. 1, The radius is expressed in kilometers,

IV. Case of Infinite Density at the Center
In the general case, numerical integration of our
equations does not meet with any severe complication
when the density at the center is a finite quantity, It
would be of interest, however, to consider the limiting
case when ty (0) = o, As we see from Fig. 3, the radi-
us and mass then tend to finite limits, Some limiting
configuration for which P (0) = « must then clearly ex-
ist, At very high densities, a baryon gas becomes ex-
tremely relativistic. At such density levels, we may as-
sume P & p/3, However, at'this point we shall use

P = zp, (4.1)

since later on we shall pursue the same reasoning for the
altemative case when z = 1/3. Now, for the case z =

R am

18 \

14 A\
I\
1 / % / \\

7N

/ \
é J \
7 J
7

4 i M)
0 0 0 05 U‘IFM/.Z%D

Fig. 3. Relationship between mass
and radius for baronic stars, Curve
1 refers to those configurationscon-
sisting of a real baryon gas. Thera-
dius is taken to mean the value of
the coordinate r at the surface of
the star,

1/ 3which we entertain, Eq. (4.1) is fulfilled approximately
starting our from the center to those distances atwhich a
baryon gas ceases to be highly relativistic,

Within this cenwal sphere ty (r) >> 1, and the solu-
tion to Egs. (2.2") and (2.3') may be sought in the follow-
ing form:

br-p(r) = % (4.2)

Substitution of Eqgs. (4.2) and (4.1) into Egs. (2.2")
and (2.3") yields forthwith:

2z (4.3)

R TR (e

As a result, we obtain the solution in the form:

drp = — =L u(r) =ar. (4.4)

In particular, at z = 1/38, we have a = 3/14:

4r-p(r) = =5 u(r) = 13—41'. (4.5)
We accepted the solution (4.5) out to the distance
r=26.9" 10, At that distance we have p = 3,58.10%
P==114-10% andu= 1.48 107, All the values
here appear in the units of Eq. (2.5). Assuming these val-
ues for r, P, P,and u to be the initial conditions, Egs.
(2.2 and (2.3") were then integrated numerically to the
periphery of the star, i.e., to the distance where p = P
= 0, Inthe course of the numerical solution, it was found
that the asymptotic solution which we found retained its
validity even for values of r far exceeding 6.9 - 107
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i.e., the value of r at which we began the numérical in-
tegration, For example, at the distancer == 5.5 - 1073,
the value of u calculated according to the asymptotic
solution deviated by only 1% from the exact solution.

As is clearly seen from the last line in Table 1, the
limiting mass comresponding to the solution treated here
is 0,324, and R = 11,1 km,

The corresponding configuration in the theory pro-
posed by Oppenheimer and Volkoff exhibits a mass 0.430
and aradius 6.2km, ItisclearthatthevaluesM = 0,340
and R = 3,1 km reported by Oppenheimer and Volkoff.
are in error.

V. Configuration of a Nonideal Baryon Gas

An analysis of experiments related to a study of col-
lisions between energetic nucleons has shown thatatsmall
interparticle distances of the order of 0.4 fermi or less,
extremely intense repulsive forces apparently come into
action, These forces are sometimes approximated in the
form of the Dirac delta function, i.e., it is assumed that
the nucleon has a hard core with a radius of the order of
0.2 fermi, We infer from the preceding remarks that a
baryonic gas can no longer be considered an ideal gas at
at baryon density N > 104 ¢cm™3 (tp > 3.2)whenthemean
interparticle distance I < 0.5 fermi,

Unfortunately, the behavior of nuclear forces at high
particle speeds is known only to a slight extent, It is evi-
dent that these forces are essentially dependent not only
on distance but on particle velocities and spins, However,
we still have no rigorous description of the interaction
between nucleons at high velocities. As pertains to hy-
perons. nothing whatever is known about their interactions,
It can only be said that interactions between hyperons are
also stronginteractions (bringing nuclear forces into play).

Such being the situation, it is of course difficult to
construct any rigorous theory of superdense configurations
taking interaction between baryons into account. It is
however possible to consider, in a rough-way, the effect
of this interaction in the equation of state, so as to deter-
mine the direction and order of variation of parameters
(mass, radius, and others) characterizing the star. It is
evident that the introduction of repulsive forces between
baryons at close range leads to increased internal pres-
sure, and as a corollary to increased masses of the con-
figurations.

We suggested that, independently of the type of
baryons involved, each particle has associated with it a
potential energy

U(N)=3.2-10"8N2 — 6.4-107%, (5.1)
where N is the baryon density. The formula is so chosen
that at N > 10% cm™3 it exceeds the kinetic energy of
the particles (including the rest energy), while at densi-
ties of a lower order it would coincide with the depth of
the potential well in ordinary nuclear matter, Thus, ac-
cording to Eq, (5.1), we have U/E~ 4 at
cm™® and U/E ~ 125 at N = 10*', Then E=mc?
(1-8% 18 s the upper cutoff of kinetic energy at the
given density. As we see, formula (5,1) corresponds qua-
litatively to the real picture, However, in our calcula-
tions of stellar configurations, we disregarded the con-
stant term in B4, (5,1). This has no essential significance
and consideration of that term in the work apparently led
only to a slight decrease in mass, We repeat that our
goal at this point is solely to trace out a qualitative pic-
ture of the state of affairs,

Bearing in mind Eq. (5.1), we now find for the equation of state [6]:

p=po .-

NU@N); P = P, - N22U

E (5.2)

where P,y and P, signify energy density and pressure for an ideal baryon gas. Equations (5.2) transform, in the case of

low densities, to (3,1) and (3.2).

Substituting Eq. (5.2) into Egs, (2, 2")and (2, 3")we find

G Na(F) Gt — )+ VT W) 4 Neome] (5.9
dt,, 4
T Tz

4 (:—") (shtk—Zsh )+4K {NU(NH—deN—I-ch?]

o K
) 1 my N 3 d av \ dN 5.4
%7 (——) (chtk—luhT—l-Z})at +x dN(N”‘W)J' (5.9)
. 1 au
. [ - a m_) (sht,,—8sh—_~-3t,,)+K N3 ]—I—u(r)}

Integration of this set of equations is carmried out numerically, and the task was facilitated by prior construction
of graphs representing the right-hand members of Egs, (5.3) and (5.4) as functions of parameter ty,.
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TABLE 2, Several of the Most Important Parameters of Hyperonic Stars Consisting of a

Real Baryon Gas

Results of the calculations are entered in Table 2
and graphed in Figs, 1, 2, 3, Curves 2a and 2b inFig. 1
represent the mass of the star and the mass of its hyperon
core as functions of tp (0). We see that the introduction
of repulsive forces acting at close range leads to an ap-
preciable increase in the possible values of stellar mass
compared to the mass of configurations consisting of an
ideal gas.

It might be asked to what extent this conclusion is
essentially related to a special form of the potential of
repulsive forces, Would it be possible for hyperon stars
to acquire masses many times exceeding that of our sun,
if the repulsive potential function be chosen appropriate-
ly?. This is answered in the negative for static configur-
ations, The calculations which we have performed have
convinced us that a reasonable choice of values for the
radius of action of repulsion forces, independently of their
intensity, lends no support to the notion of static config-
urations of large mass, This is shown in fact in the fol-
lowing section, using a model of an incompressible fluid
as an example, The reason why it is impossible to ac-
cumulate large masses (compared to the solar mass) is
the fact that, according to Einstein's theory of gravitation,
the dimensions of static configurations in which density
exceeds a certain density cutoff may not exceed a certain
limit in size, since the gravitational radius may not ex-
ceed half the ordinary radius,

As curve 2a shows, the mass value has a clearly pro-
nounced peak at t;, (0) # 3 (N~ 5,5 - 10%¥ cm™%), At
th(0) >4(N>35- 10% cm-%) the stellar mass remains
almost constant, i.e., is independent of density at the cen-
ter of the configuration. It is interesting to note in this
context that the bulk of the stellar matter is concentrated

Star Hyperonic core of star
inate coordinate
density at center mass c%(;rglil‘ia mass radius
Matter I @ w =
Baryon ‘g 0 o o5

> density dendty 1 28 | 5ys S | sm| 22 |53y 25| &
Z N(0), cm™3 g /em? 53 SES 8% | 25| B2 | 2¢H 8| 58 | =
2.1 | 6.40.10% | 1.12.10% | 0.0770| 0.745 0.892 12.2 | — - — —
2.2 | 7.80-10% | 1.44.1015 | 0.0818| 0.760 0.855 [11.7 10.0073/0.0678 0,220 | 3.01
2.4 | 1.25-10% | 2.36-10% | 0.0926| 0.860 |0.740 |10.0 [0.038 |0.353 |0.346 | 4.74
2.6 |2.10-10% | 4.31-10% | 0.108 | 1.007 [0.607 | 8.32]0.079 |0.734 |0.393 | 5.38
3.0 | 5.45-10% | 1.67-10' | 0.411 | 1.028 |0.394 | 5.40|0.104 |0.966 |0.325 | 4.45
3.1 | 6.95-10% | 3.56-10% | 0.102 | 0.947 |0.370 | 5.07/0.098 |0.910 |0.305 | 4.18
3.2 18.75-10% | 5.75-10 | 0.0912| 0.847 10.348 | 4.77/0.088 {0.817 |0.281 } 3.85
3.3 | 1.08-10% | 9.68-10% | 0.0836| 0.777 |0.341 | 4.67/0.080 |0.743 |0.268 | 3.67
3.4 |1.30-10% | 1.38-10Y | 0.0724| 0.673 |0.328 | 4.5010.070 | 0.650 |0.247 | 3.38
3.8 |2.60-104 | 5.46-10'7 | 0.0747 | 0.666 |0.349 | 4.79(0.0665|0.618 |0.252 | 3.46
4.0 | 3.50-10% | 1.61-10® | 0.0722| 0.670 |0.358 | 4.900.0663|0.615 |0.257 | 3.52
5.0 11.26-10% | 7.25-10 | 0.0738| 0.686 {0.360 | 4.93|0.068 |0.631 [0.259 | 3.55
5.32 | 1.80-104 | 2.01-102 | 0.0738| 0.686 [0.360 | 4.93]0.068 {0.631 10.259 | 3.55
6.00 | 3.53-104 | 1.55-10% | 0.0738| 0.686 {0.360 | 4.93|0.068 |0.631 |0.259 | 3.55
7.00 { 9.36-10% | 2.88-10% | 0.0738| 0.686 [0.360 | 4.93]0.068 [0.631 10.259 | 3.55
oo oo o 0.0744| 0.6905|0.3615] 4.9510.0692|0.643 |0.2625 3.60

in the hyperon core for all these values of ty (0). The ra-
dius of the configuration varies to a very small extent in
precisely the same manner for t; (0) > 4.

Curves 2a and 2b in Fig, 2, describe the coordinate
radius of the star and the coordinate radius of the hyperon
core as functions of tp (0). As we see, the radius of the
star at first varies inversely with the central density and
then remains approximately constant, By comparing
cwves la and 2a, we find that in the case of a real gas
the radius of the configuration is appreciably smaller than
in the case of an ideal gas. The situation is the reverse
for the radius of hyperon cores of the same configurations.

In Fig. 3 (cwve 2), we have the relationship between
mass and coordinate radius of a configuration consisting
of a real gas, We see that the radius is not a single-val-
ued function of mass for all values of the latter.

Note, however, that strictly speaking it is the number
of baryons in a star, and not the mass, that is the basic pa-
rameter characterizing the configuration in our theory.
Two configurations with the same number 1 of baryons
may possess not only different radii but even different
masses, since the mass defect in those configurations may
be different. The configuration of lesser mass (larger mass
defect) will be the more stable, A judicious choice of
stable configurations could therefore be arrived at only on
the basis of diagrams linking values of n and M.

To afford a comparison, configurations of a real neu-
tron gas were also calculated, with the assumption that
potential energy is in that case likewise defined by Eq.
(5.1). The results obtained are indicated by full dots in
Fig. 1, It is clear from inspection of the diagram that at
a given central density the mass of hyperon-containing
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configurations is appreciably smaller than the mass of a
hypothetical pure neutron star.

Note, finally, that even in the case of a nonideal gas,

the model for which t (0) = « was studied separately.
The investigation was pursued in the same manner as in
the preceding section with application to an ideal gas, It
is readily seen that in this case, as t; = «, we have

P = 2p, (5.5)

in other words, z = 2, From Ed, (5.5), we derive the
asymptotic solution

4
p(r)=17r2;u(r)=ﬁr. (5.6)

We assume this solution to be valid out to distance

r =210, where t, = 6.3, p (1) = 4.7 - 10%;

P = 9,4+ 10°, Furthermore, assuming these values to
be the initial conditions, we carried out an integration
to the point at which the density vanishes,

After much of our computational work was already
behind us, we became informed of the recent contribu-
tion by Cameron [56], This author calculated neutron
configurations under the assumption that the energy den-
sity was

& = 7.98-10%%5 + 9.79-107%p% — 1.381.10%2 (5.7)

where P, = Nmy, is the density in g/cm?, and +Nmp
corresponds to our notation P, In Egs, (5.7), the first
term is the neutron kinetic energy, while the two follow-
ing terms constitute the potential energy density.

The interaction between neutrons described by Eq,
(5.7) enters into prominence at much longer range than
the interaction described by our formula (5.1). The
models arrived at by Cameron must therefore differ from
the models calculated for an ideal Fermi gas, slightly
larger than the models of neutron stars calculated on the
basis of the interaction formula (5.1).

And in fact, the values for the masses of configura-
tions at certain ty (0) values as reported by Cameron do
significantly exceed these predicted by Eq. (1), which
are graphed in Fig. 1 as black dots.

The mass values obtained by Cameron do seem too
high to us, however, and it would be desirable to carry
out more detailed quantitative comparisons.

VI. Model of an Incompressible Fluid

In the present section, we shall consider an "ideal
gas" consisting of baryons of finite dimensions. When the
particles are not in contact with each other the interac-
tion energy vanishes. On the other hand, the particulars
are absolutely hard and mutually impermeable.

We also assume that particles of all species have
the same proper radius, although we shall take Lorentz
contraction into account.

For a similar gas, some maximum density Py must
exist at which the space is packed to maximum density

with particles. It may happen that this maximum den-
sity would be achieved in a given configuration at some
distance Ry from the center,

We shall have the following expression for the den-

sity:

%%? ( )(shtk—th)+mﬂan,

p(n) = for r> R,, (6.1)

= const, for r<P,.

As for the pressure P, it is determined from the form-
ula (3,2) forr > ry, and for r < Ry will be found to in-
crease to some maximum value at the center.

Let us now find out at which values of the parame-
ter t, incompressibility will come about, It is clear that
for this value of t;; we should have

T () =1, (6.2)

where 7T is the total volume of particles enclosed in a
unit volume of the star computed with Lorentz contrac-
tion taken into account, Of course we must include with-
in T such intervals as remain when particles are closely
packed. For the volume T we have

myc? p2 g
-ifalaniE

where b is the proper volume for one baryon,
Carrying out the indicated integration, we get

t
T (tn) = bZak <2sh —Z'i — tk) , (6.4)
. .

where we introduce the notation

a, (myc \? .
162 ( h ) = %
It thus follows from Eqs. (6.2) and (6.4) that incom-

pressibility sets in starting with the value of the param-
eter ty satisfying the equation

b Doy [2sh (t/2) — tx] = 1. (6.5)
- .

To obtain the solution to Eq. (6.5), we must first
have the value of the parameter b, We now assume that
the value of b is equal to the quadrupled proper volume
of the core. Bearing in mind the fact that this value
must be of the order of 10™ cm™3, we assume, e.g.,
b=4.,5-10 0 emd, Subsutuung this value into Eq,
(6 5), we now find for tn

n = 2.65,
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We now determine the mass and radius of the cen-
tral core consisting of incompressible matter, Accord-
ing to Eqs. (2.2")and (2.3"),we have

du .

d_r- = 4“’.29”31 6
dP P+, (6.6)
T T T (4nr3P 4+ u),

where Py is indeed our maximum density, equal to
0,63, at which incompressibility sets in, The value of
P referred to was found from the equation
1 1
Pm = ZJ'T 7(1;,. (Sh t?‘ — tg), (6.7)
k

where t'i( = tk(t%) are constant numbers,

Integrating Eq. (6.5) from zero to r and remember-
ing that u (0) == 0, we obtain

4
u (T) = %pmr". (6.8)

Substituting Eq. (6.8) into (6.6) and integrating from
the center of the star to the boundary of the incompres-
sible sphere, we obtain for the coordinate radius of that

sphere

2
Ry = {Snpm

3Pm+ pm Pc+ pm 2 s
. 6.9
[1 (Pm+pm 3P+ o ) ]} (69

where P and P, are respectively the pressure at the cen-
ter of the star and the pressure at the surface of the in-
compressible sphere. Substituting t(l’.1 == 2,65 into Egs,
(3.2").we find p; == 0.625; P, = 0.0342,

From Eq, (6.9) and (6.8), we find the mass of the
entire incompressible sphere:

u (Ry)

_ 0813 1, (3PmtPm Potem )2]”’ (6.10)
—Vlt:l'l:pm[ (Pm"'pm 3P+ pp, .

Substituting p = 0.63 and P, = 0.034 into Eds.
(6.9) and (6.10), we arrive at

P A
R, = 0.436 [1 —1.22(31%'_%)2] :
[ m

(6.11)

P /2
u (Ro) = 0.22[1 —1.22(9%"_9";—)2] .

Considering, in particular, configurations for which
Pc > P, we obtain, for the mass and radius of an in-
compressible sphere at t% = 2.65

4 (fo) = 0.175; R = 0,406. (6.12)

Moreover, assuming that the equation of state is de-
termined from formulas (3,1) and (3,2), and proceeding
from initial conditions (6.12), we may integrate Edgs.,
(2.2) and (2.3) to the periphery of the star, i.e., to that
distance R at which

p(R)=P(R) =0,
as a result of which we obtain

R=6km; M=1.70.

Choosing for the volume b a large value, we might
end up with a large configuration mass,

Summary

The calculations carried out demonstrate that the
masses of equilibrium configurations of a degenerate non-
rotating baryon gas,in a case where we assume the gas
to be an ideal gas, are of the order of a half of a solar
mass, and that the radii reach out several kilometers.

The masses of the degenerate configurations calcu-
lated for a real Fermi gas of baryons under the assump-
tion that repulsive forces are active at close range be-
tween baryons, are appreciably larger than the masses of
configurations of an ideal gas. However, small masses
of the order of a solar mass are also obtained inthiscase.
Even if we alter the law of repulsion assumed to prevail,
we would still be unable to obtain configurations with
masses far exceeding, in order of magnitude, a solar mass.

The sizes and masses of the outer regions of a baryon
star, i.e., the neutron layer or proton-electron layer,
comprise a small part of the total mass and size of the
star at fairly high central densities. Thebulk of thestar's
mass in those cases goes into the hyperbn core, These
configurations are therefore conveniently termed hyperon
configurations,

Configurations with slightly lower central densities
(P < 10% g/ cm®) lack hyperon cores and consist entirely
of neutrons.

We feel it my duty to express our gratitude to the
workers of the Computing Center of the Academy of
Sciences of the Armenian SSR for carrying out an impor-
tant part of the computational work in integration of the
differential equations for the configurations investigated.
We are also grateful to G. S. Sarksyan, employee at the
Institute of Physics of the Academy .of Sciences of the
Armenian SSR, and to N, G, Akopyan, laboratory tech-
nician of the Physics Department of Erevan State Univer-
sity, for performing many of the necessary calculations,

(6.13)
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